Anion-channel blockers interfere with auxin responses in dark-grown Arabidopsis hypocotyls.
نویسندگان
چکیده
Anion channels are thought to participate in signal transduction and turgor regulation in higher plant cells. The regulation of hypocotyl cell elongation is a situation in which these channels could play important roles because it involves ionic fluxes that are implicated in turgor control and orchestrated by various signals. We have used a pharmacological approach to reveal the contribution of anion channels in the regulation of the development of hypocotyls by auxins. Auxins induce an inhibition of elongation, a disintegration of the cortical cell layers, and the formation of adventitious roots on Arabidopsis thaliana hypocotyls grown in the dark. Anion-channel blockers such as anthracene-9-carboxylic acid, 4,4'-diisothiocyanatostilbene-2-2'-disulfonic acid, 4-acetamido-4'-isothiocyanato-stilbene-2-2'-disulfonic acid, and R(+)-methylindazone; indanyloxyacteic acid-94, which produce little or no stimulation of hypocotyl elongation by themselves, are able to counteract the inhibition and the disintegration induced by auxins with various efficiencies. This interference appears to be specific for auxins and does not occur when hypocotyl elongation is inhibited by other growth regulators such as ethylene or cytokinins. The putative involvement of anion channels in auxin signal transduction is discussed.
منابع مشابه
Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis.
Many auxin responses are dependent on redistribution and/or polar transport of indoleacetic acid. Polar transport of auxin can be inhibited through the application of phytotropins such as 1-naphthylphthalamic acid (NPA). When Arabidopsis thaliana seedlings were grown in the light on medium containing 1.0 microM NPA, hypocotyl and root elongation and gravitropism were strongly inhibited. When gr...
متن کاملA hormonal regulatory module that provides flexibility to tropic responses.
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation...
متن کاملRCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl el...
متن کاملAXR2 encodes a member of the Aux/IAA protein family.
The dominant gain-of-function axr2-1 mutation of Arabidopsis causes agravitropic root and shoot growth, a short hypocotyl and stem, and auxin-resistant root growth. We have cloned the AXR2 gene using a map-based approach, and find that it is the same as IAA7, a member of the IAA (indole-3-acetic acid) family of auxin-inducible genes. The axr2-1 mutation changes a single amino acid in conserved ...
متن کاملA Hormonal Regulatory Module That Provides Flexibility to Tropic Responses1[C][W]
Plants orient their growth depending on directional stimuli such as light and gravity, in a process known as tropic response. Tropisms result from asymmetrical accumulation of auxin across the responding organ relative to the direction of the stimulus, which causes differential growth rates on both sides of the organ. Here, we show that gibberellins (GAs) attenuate the gravitropic reorientation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 115 2 شماره
صفحات -
تاریخ انتشار 1997